References

Arthur, David, and Sergei Vassilvitskii. 2006. “K-Means++: The Advantages of Careful Seeding.”
Bayes, Thomas. 1958. Essay Toward Solving a Problem in the Doctrine of Chances. Biometrika Office.
Bischl, Bernd, Raphael Sonabend, Lars Kotthoff, and Michel Lang. 2024. Applied Machine Learning Using Mlr3 in r. CRC Press.
Breiman, L, JH Friedman, R Olshen, and CJ Stone. 1984. “Classification and Regression Trees.”
Chapman, Pete, Julian Clinton, Randy Kerber, Thomas Khabaza, Thomas Reinartz, Colin Shearer, and Rüdiger Wirth. 2000. “CRISP-DM 1.0: Step-by-Step Data Mining Guide.” Chicago, USA: SPSS.
Gareth, James, Witten Daniela, Hastie Trevor, and Tibshirani Robert. 2013. An Introduction to Statistical Learning: With Applications in r. Spinger.
Grolemund, Garrett. 2014. Hands-on Programming with r: Write Your Own Functions and Simulations. " O’Reilly Media, Inc.".
James, Gareth, Daniela Witten, Trevor Hastie, Robert Tibshirani, et al. 2013. An Introduction to Statistical Learning. Vol. 112. 1. Springer.
Lantz, Brett. 2019. Machine Learning with r: Expert Techniques for Predictive Modeling. Packt publishing ltd.
Messerli, Franz H. 2012. “Chocolate Consumption, Cognitive Function, and Nobel Laureates.” N Engl J Med 367 (16): 1562–64.
Moro, Sérgio, Paulo Cortez, and Paulo Rita. 2014. “A Data-Driven Approach to Predict the Success of Bank Telemarketing.” Decision Support Systems 62: 22–31.
Pearl, Judea, and Dana Mackenzie. 2018. The Book of Why: The New Science of Cause and Effect. Basic Books. https://www.basicbooks.com/titles/judea-pearl/the-book-of-why/9781541644649/.
Sutton, Richard S, Andrew G Barto, et al. 1998. Reinforcement Learning: An Introduction. Vol. 1. 1. MIT press Cambridge.
Wheelan, Charles. 2013. Naked Statistics: Stripping the Dread from the Data. WW Norton & Company.
Wickham, Hadley, Garrett Grolemund, et al. 2017. R for Data Science. Vol. 2. O’Reilly Sebastopol, CA.
Wolfe, Douglas A, and Grant Schneider. 2017. Intuitive Introductory Statistics. Springer.